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Knowledge, Ignorance,
and Learning

Peter M. Allen

If we look at the dictionary definitions of science, we find “sys-
tematic and formulated knowledge.” Systematic is defined as
“methodical, expressed formally, according to a plan.” If we look
up complexity, we find “consisting of parts, composite, compli-

cated, involved.” And the definition of complicated is “intricate, involved,
hard to unravel.”

Putting these together, and excluding the “intricate and hard to
unravel” part, a definition of systems science could be the systematic, for-
mulated knowledge that we have about situations or objects that are
composite. But already we can see the origins of the major branches of
“complexity thinking,” whether one is discussing a complicated system of
many parts, or alternatively what might be a relatively simple system of
parts whose mutual interactions make them “hard to unravel.” We also
see the fundamental paradox that is involved in the science of complex-
ity, since it purports to be the systematic knowledge that we have about
objects of study that will be either “intricate or hard to unravel.”

Systematic and formulated knowledge about a particular situation or
object may be of different kinds. It could be what type of situation or
object we are studying; what it is “made of;” how it “works;” its “history;”
why it is as it is; how it may behave; how and in what way its behavior
might be changed. 

The science of complexity is therefore about the limits to the creation
of systematic knowledge (of some of the above types) in situations or
objects that are either “intricate or hard to unravel.”

This has two basic underlying reasons: 



� Either the situation considered contains an enormous number of
interacting elements making calculation extremely hard work,
although all the interactions are known.

� Or the nonlinear interactions between the components mean that
bifurcation and choice exist within the situation, leading to the possi-
bility of multiple futures and creative/surprising responses. 

With today’s enormously increased computational power, the first case is
not necessarily a problem, whereas the second corresponds to what we
shall call the science of complexity. We shall create a framework of sys-
tematic knowledge concerning the limits to systematic knowledge. This
will take us from a situation that is so fluid and nebulous that no system-
atic knowledge is possible to a mechanical system that runs along a pre-
dicted path to a predicted equilibrium solution. Clearly, most of the
problems that we encounter in our lives lie somewhere between these
two extremes. What the science of complexity can do for us is allow us to
know what we may reasonably expect to know about a situation. It can
therefore banish false beliefs in either total freedom of action or total lack
of freedom. 

The identification of “knowledge” with “prediction” arose from the
success and dominance of the mechanical paradigm in classical physics.
This is understandable, but erroneous. While it is impressive to be able
to predict eclipses, it is indeed “knowledge” to know, in a particular situ-
ation (playing roulette?), that prediction is impossible. In the natural sci-
ences, for many situations it was possible to know what was going to
happen, to predict the behavior, on the basis of the (fixed) behavior of the
constituent components. The Newtonian paradigm based on planetary
motion, the science of mechanics, applied to situations where this was
true, and indeed in which the history of a situation, and knowledge as to
“why it was as it is,” were not required for the prediction.   

But of course, “mechanical systems” turn out to be a very special case
in the universe! They may even exist only as abstractions of reality in our
minds. The real world is made up of coevolving, interacting parts where
patterns of interaction and communication can change over time, and
structures can emerge and reconfigure.  

KNOWLEDGE GENERATION

In the next two sections we set out a systematic framework of knowledge
about the limits to knowledge. The different aspects of knowledge may be: 
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� What type of situation or object we are studying (classification— “pre-
diction” by similarity).

� What it is “made of” and how it “works.”
� The “history” of process and events through which it passed.  
� The extent to which its “history” explains why it is as it is.
� How it may behave (prediction).
� How and in what way its behavior might be changed (intervention

and prediction).

In previous papers Allen has presented a framework of “assumptions”
that, if justified, lead to different limits to the knowledge one can have
about a situation (Allen, 1985, 1988, 1993, 1994, 1998). 

ASSUMPTIONS USED TO REDUCE COMPLEXITY TO SIMPLICITY
What are these assumptions? 

1 We can define a boundary between the part of the world that we want
to “understand” and the rest. In other words, we assume first that
there is a “system” and an “environment.”  

2 We have rules for the classification of objects that lead to a relevant
taxonomy for the system components, which will enable us to under-
stand what is going on. This is often decided entirely intuitively. In
fact, we should always begin by performing some qualitative research
to try to establish the main features that are important, and then keep
returning to the question following the comparison of our under-
standing of a system with what is seen to happen in reality.  

3 The third assumption concerns the level of description below that of
the chosen components or variables. It assumes that these compo-
nents are “homogeneous:”

— either without any structure;
— made of identical subunits;
— or made up of subunits whose diversity is at all times distributed

“normally” around the average.

This assumption, if it can be justified, will automatically lead to a
description over time that cannot change the average properties of the
components. The “inside” of a component is not affected by its expe-
riences. It leads to a description based on components with fixed,
stereotypical insides. This is a simplification of reality that fixes the
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nature and responses of the underlying elements inside the compo-
nents. It creates “knowledge” in the short term at the expense of the
long. When we make this simplifying assumption, although we create
a simpler representation, we lose the capacity for our model to “rep-
resent” evolution and learning within the system.

4 The fourth assumption is that the individual behavior of the sub-
components can be described by their average interaction para-
meters. So, for example, the behavior of different employees in a
business would be characterized by the average behavior of their job
type. This assumption (which will never be entirely true) eliminates
the effects of “luck” and of randomness and noise that are really in the
system.  

The mathematical representation that results from making all four of
these assumptions is that of a mechanical system that appears to “predict”
the future of the system perfectly. 

A fifth assumption that is often made in building models to deal with
“reality” is that of stability or equilibrium. It is assumed in classical and
neoclassical economics, for example, that markets move rapidly to equi-
librium, so that fixed relationships can be assumed between the different
variables of the system. The equations characterizing such systems are
therefore “simultaneous,” where the value of each variable is expressed
as a function of the values of the others. Traditionally, then, “simple” mod-
els have been used to try to understand the world around us, as shown in
Figure 1 overleaf. Although these can be useful at times, today we are
attempting to model “complex” systems, leaving their inherent complex-
ity intact to some extent. This means that we may attempt to build and
study models that do not make all of these simplifying assumptions. 

What is important about the statement of assumptions is that we can
now make explicit the kind of “knowledge” that is generated, provided
that the “necessary” assumptions can be made legitimately. Relating
assumptions to outcomes in terms of types of model, we have the science
of complexity.

THE SCIENCE OF COMPLEXITY

Having made explicit the assumptions that can allow a reduction in the
complexity of a problem, we can now explore the different kinds of
knowledge that these assumptions allow us to generate. 
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EQUILIBRIUM KNOWLEDGE
If we can justifiably make all five assumptions above, and consider only
the long-term outcome, then we have an extremely simple, hard predic-
tion. That is, we know the values the variables will have, and from this can
“calculate” the costs and benefits that will be experienced. Such models
are expressed as a set of fixed relationships between the variables, calcu-
lable from a set of simultaneous equations. 

Of course, these relationships are characterized by particular para-
meters appearing in them, and these are often calibrated by using regres-
sion techniques on existing data. Obviously, the use of any such set of
equations for an exploration of future changes under particular exogenous
scenarios would suppose that these relationships between the variables
remained unchanged. In neoclassical economics, much of spatial geo-
graphy, and many models of transportation and land use, the models that
are used operationally today are still based on equilibrium assumptions.
Market structures, locations of jobs and residences, land values, traffic
flows, etc. are all assumed to reach their equilibrium configurations “suf-
ficiently rapidly” following some innovation, policy, or planning action, so
that there is an equilibrium “before” and one “after” the event or action,
vastly simplifying the analysis.

The advantage of the assumption of “equilibrium” lies in the simplicity
that results from having only to consider simultaneous and not dynamical
equations. It also seems to offer the possibility of looking at a decision or
policy in terms of stationary states “before” and “after” the decision. All

EMERGENCE

82

Reality

X

Z

Y

X

Z

Y

1. Classification
2. Boundary

3. Average Types 4. Average Events 5. The Attractors

Complexity            Successive Assumptions Simplicity

Evolutionary Models

Changing Taxonomy
Learning Models...
Creativity + SelectionSoft Systems

Literature, History,
Descriptions... Systems change

qualitatively...
Events and Processes
Systems diverge...

Self-Organization
Autopoiesis
Catalytic Sets

     Selection

Nonlinear Dynamics

Stability, Resilience,
Bifurcations,
Attractors, Chaos...

The systems just
RUNS. But the
modeler can
make experiments

Figure 1 The assumptions made (left to right) in trading off realism and
complexity against simplification and hence ease of understanding



cost/benefit analysis is based on this fundamentally flawed idea. 
The disadvantage of such an approach, where an equilibrium state is

simply assumed, is that it fails to follow what may happen along the way. It
does not take into account the possibility of feedback processes where
growth encourages growth, decline leads to further decline, and so on (non-
linear effects), which can occur on the way to equilibrium. In reality, it
seems much more likely that people discover the consequences of their
actions only after making them, and even then have little idea of what would
have happened if they had done something else. Because of this, inertia,
heuristics, imitation, and postrationalization play an enormous role in the
behavior of people in the real world. As a result, there is a complex and
changing relationship between latent and revealed preferences, as individ-
uals experience the system and question their own assumptions and goals.
By simply assuming “equilibrium,” and calibrating the parameters of the
relationships on observation, one has in reality a purely descriptive approach
to problems, following, in a kind of post hoc calibration process, the changes
that have occurred. This is not going to be very useful in providing good
advice on strategic matters, although economists appear to have more influ-
ence on governments than do any other group of academics.

NONLINEAR DYNAMICS
Making all four assumptions leads to system dynamics, a mechanical rep-
resentation of changes. Nonlinear dynamics (system dynamics) are what
results generally from a modeling exercise when assumptions 1 to 4 above
are made, but equilibrium is not assumed. Of course, some systems are
linear or constant, but these are both exceptions, and also very boring. In
the much more usual case of nonlinear dynamics, the trajectory traced by
such equations corresponds not to the actual course of events in the real
system but, because of assumption 4, to the most probable trajectory of an
ensemble of such systems. In other words, instead of the realistic picture
with a somewhat fluctuating path for the system, the model produces a
beautifully smooth trajectory. 

This illusion of determinism, of perfectly predictable behavior, is cre-
ated by assuming that the individual events underlying the mechanisms
in the model can be represented by their average rates. The smoothness
is only as true as this assumption is true. Systems dynamics models must
not be used if this is not the case. Instead, some probabilistic model based
on Markov processes might be needed, for example.  

If we consider the long-term behavior of nonlinear dynamical sys-
tems, we find different possibilities. They may:
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� Have different possible stationary states. So, instead of a single, “opti-
mal” equilibrium, there may exist several possible equilibria, possibly
with different spatial configurations, and the initial condition of the
system will decide which it adopts.

� Have different possible cyclic solutions. These might be found to cor-
respond to the business cycle, for example, or to long waves.

� Exhibit chaotic motions of various kinds, spreading over the surface
of a strange attractor.

An attractor “basin” is the space of initial conditions that lead to particular
final states (which could be simple points, or cycles, or the surface of a
strange attractor), and so a given system may have several different possi-
ble final states, depending only on its initial condition. Such systems can-
not by themselves cross a separatrix to a new basin of attraction, and
therefore can only continue along trajectories that are within the attractor
of their initial condition. Compared to reality, such systems lack the “vital-
ity” to jump spontaneously to the regime of a different attractor basin. If
the parameters of the system are changed, however, attractor basins may
appear or disappear, in a phenomenon known as bifurcation. Systems that
are not precisely at a stationary point attractor can follow a complicated
trajectory into a new attractor, with the possibility of symmetry breaking
and, as a consequence, the emergence of new attributes and qualities.    
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SELF-ORGANIZING DYNAMICS
Making assumptions 1 to 3 leads to self-organizing dynamic models,
capable of reconfiguring their spatial organizational structure. Provided
that we accept that different outcomes may now occur, we may explore
the possible gains obtained if the fourth assumption is not made.

In this case, nonaverage fluctuations of the variables are retained in
the description, and the ensemble captures all possible trajectories of our
system, including the less probable. As we shall see, this richer, more
general model allows for spontaneous clustering and reorganization of
spatial configuration to occur as the system runs, and this has been
termed “self-organizing.” In the original work, Nicolis and Prigogine
(1977) called the phenomenon “order by fluctuation,” while Haken (1977)
called it “synergetic,” and mathematically it corresponds to returning to
the deeper, probabilistic dynamics of Markov processes (see, for example,
Barucha-Reid, 1960) and leads to a dynamic equation that describes the
evolution of the whole ensemble of systems. This equation is called the
“master equation,” which, while retaining assumption 3, assumes that
events of different probabilities can and do occur. So, sequences of events
that correspond to successive runs of good or bad “luck” are included,
with their relevant probabilities. 

Each attractor is defined as being the domain in which the initial con-
ditions all lead to the final result. But, when we do not make assumption
4, we see that this space of attractors has “fuzzy” separatrices, since
chance fluctuations can sometimes carry a system over a separatrix across
to another attractor, and to a qualitatively different regime. As has been
shown elsewhere (Allen, 1988) for systems with nonlinear interactions
between individuals, what this does is to destroy the idea of a trajectory,
and gives to the system a collective adaptive capacity corresponding to
the spontaneous spatial reorganization of its structure. This can be imi-
tated to some degree by simply adding “noise” to the variables of the sys-
tem. This probes the stability of any existing configuration and, when
instability occurs, leads to the emergence of new structures. Such self-
organization can be seen as a collective adaptive response to changing
external conditions, and results from the addition of noise to the deter-
ministic equations of system dynamics. Methods like “simulated anneal-
ing” are related to these ideas. 

Once again, it should be emphasized that self-organization is a natu-
ral property of real nonlinear systems. It is only suppressed by making
assumption 4 and replacing a fluctuating path with a smooth trajectory.
The knowledge derived from self-organizing systems models is not
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simply of its future trajectory, but instead of the possible regimes of oper-
ation that it could potentially adopt. Such models can therefore indicate
the probability of various transitions and the range of qualitatively differ-
ent possible configurations and outcomes.   

EVOLUTIONARY COMPLEX SYSTEMS
System components and subcomponents all coevolve in a nonmechanical
mutual “learning” process. These arise from a modeling exercise in which
neither assumption 3 nor assumption 4 is made. This allows us to clarify
the distinction between “self-organization” and “evolution.” Here, it is
assumption 3 that matters, namely, that all individuals of a given type, x
say, are either identical and equal to the average type, or have a diversity
that remains normally distributed around the average type. But in reality,
the diversity of behaviors among individuals in any particular part of the
system is the result of local dynamics occurring in the system. However,
the definition of a “behavior” is closely related to the knowledge that an
individual possesses. This in turn depends on the mechanisms by which
knowledge, skills, techniques, and heuristics are passed on to new indi-
viduals over time. 

Obviously, there is an underlying biological and cultural diversity due to
genetics and to family histories, and because of these, and also because of
the impossibility of transmitting information perfectly, there will necessarily
be an “exploration” of behavior space. The mechanisms of our dynamical
system contain terms that both increase and decrease the populations of dif-
ferent “behavioral” or “knowledge” types, and so this will act as a selection
process, rewarding the more successful explorations with high payoff and
amplifying them while suppressing the others. It is then possible to make
the local micro diversity of individuals and their knowledge an endogenous
function of the model, where new knowledge and behaviors are created and
old ones destroyed. In this way, we can move toward a genuine, evolution-
ary framework capable of exploring more fully the “knowledge dynamics” of
the system and the individuals that make it up. 

Such a model must operate within some “possibility” or “character”
space for behaviors that is larger than the one initially “occupied,” offer-
ing possibilities that our evolving complex system can explore. This space
represents, for example, the range of different techniques and behaviors
that could potentially arise. This potential will itself depend on the chan-
neling and constraints that result from the cultural models and vocabulary
of potential players. In any case, it is a multidimensional space of which
we would only be able to anticipate a few of the principal dimensions.
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In biology, genetic mechanisms ensure that different possibilities are
explored, and offspring, offspring of offspring, and so on spread out in
character space over time, from any pure condition. In human systems,
the imperfections and subjectivity of existence mean that techniques and
behaviors are never passed on exactly, and therefore that exploration and
innovation are always present as a result of the individuality and contex-
tual nature of experience. Human curiosity and a desire to experiment
also play a role. Some of these “experimental” behaviors do better than
others. As a result, imitation and growth lead to the relative increase of
the more successful behaviors, and to the decline of the others. 

By considering dynamic equations in which there is an outward “dif-
fusion” in character space from any behavior that is present, we can see
how such a system would evolve. If there are types of behavior with
higher and lower payoff, then the diffusion “uphill” is gradually ampli-
fied, while that “downhill” is suppressed, and the “average” for the whole
population moves higher up the slope. This is the mechanism by which
adaptation takes place. It demonstrates the vital part played by
exploratory, nonaverage behavior, and shows that, in the long term, evo-
lution selects for populations with the ability to learn, rather than for pop-
ulations with optimal, but fixed, behavior. 
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Figure 3 If eccentric types are always suppressed, then we have non-
evolution. But, if not, then adaptation and speciation can occur



In other words, adaptation and evolution result from the fact that
knowledge, skills, and routines are never transmitted perfectly between
individuals, and individuals already differ. However, there is always a short-
term cost to such “imperfection,” in terms of unsuccessful explorations, and
if only short-term considerations were taken into account, such imperfec-
tions would be reduced. But without this exploratory process, there would
be no adaptive capacity and no long-term future in a changing world.

If we return to our modeling framework in Figure 1, where we depict
the tradeoff between realism and simplicity, we can say that a simple, appar-
ently predictive system dynamics model is “bought” at the price of assump-
tions 1 to 4. What is missing from this is the representation of the
underlying, inner dynamic that is really running under the system dynamics
as the result of “freedom” and “exploratory error making.” However, if it can
be shown that all “eccentricity” is suppressed in the system, evolution will
itself be suppressed, and the “system dynamics” will then be a good repre-
sentation of reality. This is the recipe for a mechanical system, and the ambi-
tion of many business managers and military people. However, if instead
micro diversity is allowed and even encouraged, the system will contain an
inherent capacity to adapt, change, and evolve in response to whatever
selective forces are placed on it. Clearly, therefore, sustainability is much
more related to micro diversity than to mechanical efficiency. 
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Figure 4 Without assumption 3 we have an “inner” dynamic within the
macroscopic system dynamics. Micro diversity, in various possible
dimensions, is differentially selected, leading to adaptation and emer-
gence of new behaviors



Let us now examine the consequences of not making assumptions 3,
4, and 5. In the space of “possibilities,” closely similar behaviors are con-
sidered to be most in competition with each other, since they require sim-
ilar resources and must find a similar niche in the system. However, we
assume that in this particular dimension there is some “distance” in char-
acter space, some level of dissimilarity, at which two behaviors do not
compete. In addition, however, other interactions are possible. For exam-
ple, two particular populations i and j with characteristic behavior may
have an effect on each other. This could be positive, in that side effects of
the activity of j might in fact provide conditions or effects that help i. Of
course, the effect might equally well be antagonistic, or neutral. Similarly,
i may have a positive, negative, or neutral effect on j. If we therefore ini-
tially choose values randomly for all the possible interactions between all
i and j, these effects will come into play if the populations concerned are
in fact present. If they are not there, then obviously there can be no pos-
itive or negative effects experienced.

A typical evolution is shown in Figure 6 overleaf. Although competition
helps to “drive” the exploration process, what is observed is that a system
with “error making” in its behavior evolves toward structures that express
synergetic complementarities. In other words, although driven to explore
by error making and competition, evolution evolves cooperative struc-
tures. The synergy can be expressed either through “self-symbiotic”
terms, where the consequences of a behavior in addition to consuming
resources is favorable to itself, or through interactions involving pairs,
triplets, and so on. This corresponds to the emergence of “hypercycles”
(Eigen & Schuster, 1979) and of “supply chains” in an economic system.   

The lower right-hand picture in Figure 6 shows the evolution tree
generated over time. We start off an experiment with a single behavioral
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Figure 5 A population i may affect population j, and vice versa



type in an otherwise “empty” resource space. The population initially
forms a sharp spike, with eccentrics on the edge suppressed by their
unsuccessful competition with the average type. However, any single
behavior can only grow until it reaches the limits set by its input
requirements, or, in the case of an economic activity, by the market limit
for any particular product. After this, it is the “eccentrics,” the “error-
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Figure 6 A two-dimensional possibility is gradually filled by the error-
making diffusion, coupled with mutual interaction. The final frame shows
the evolutionary tree generated by the system  



makers,” that grow more successfully than the “average type,” as they are
less in competition with the others and the population identity becomes
unstable. The single sharply spiked distribution spreads, and splits into
new behaviors that climb the evolutionary landscape that has been
created, leading away from the ancestral type. The new behaviors move
away from each other, and grow until in their turn they reach the limits
of their new normality, whereupon they also split into new behaviors,
gradually filling the resource spectrum.

While the “error-making” and inventive capacity of the system in our
simulation is a constant fraction of the activity present at any time, the
system evolves in discontinuous steps of instability, separated by periods
of taxonomic stability. In other words, there are times when the system
structure can suppress the incipient instabilities caused by innovative
exploration of its inhabitants, and there are other times when it cannot
suppress them and a new behavior emerges. It illustrates the fact that the
“payoff” for any behavior is dependent on the other players in the system.
Success of an individual type comes from the way it fits the system, not
from its intrinsic nature. The important long-term effects introduced by
considering the endogenous dynamics of micro diversity has been called
evolutionary drive, and has been described elsewhere (Allen & McGlade,
1987a; Allen, 1990, 1998).

One of the important results of “evolutionary drive” was that it did not
necessarily lead to a smooth progression of evolutionary adaptation. This
was because of the “positive feedback trap.” This trap results from the
fact that any emergent trait that feeds back positively on its own “pro-
duction” will be reinforced, but that this feedback does not necessarily
arise from improved performance in the functionality of the individuals.
For example, the “peacock’s tail” arises because the gene producing a
male’s flashy tail simultaneously produces an attraction for flashy tails in
the female. This means that if the gene occurs, it will automatically pro-
duce preferentially birds with flashy tails, even though they may even
function less well in other respects. Such genes are essentially “narcissis-
tic,” favoring their own presence even at the expense of improved func-
tionality, until such a time, perhaps, as they are swept away by some
much more efficient newcomer. This can give a punctuated type of evo-
lution, as “inner taste” temporally dominates evolutionary selection at the
expense of increased performance with respect to the environment. This
is like culture within an organization where success is accorded to those
who are “one of us.” For example, the “model” or “conjecture” within an
organization about the environment it is in and what is happening will
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tend to self-reinforce for as long as it is not clearly proved wrong. There
is a tendency to institutionalize “knowledge” and “practice” so that actors
are “qualified” to act providing they share the “normal” view. Such con-
formity and unquestioning acceptance of the company line are of seem-
ing benefit in the short term, but are dangerous over the long term. In a
static or very slowly changing world, problems may take a long time to
surface, but in a fluid, unstable, and emergent situation, this would be
disastrous in the longer term. 

Much of conventional knowledge management therefore concerns the
generation and manipulation of databases, and the IT issues raised by
this. However, knowledge only exists as the interpretive framework that
assigns “meaning” and “action” to given data inputs as the result of a par-
ticular system view. But the evolution of complex systems tells us that
structural systemic change can and will occur, and therefore that any par-
ticular “interpretive framework” will need to be able to change. This
means that any particular “culture” and set of practices should be contin-
ually challenged by dissidents, and rejustified by believers. Consensus
may be a more frequent cause of death than is conflict.  

Perhaps the real task of “management” is to create havens of “stabil-
ity” for the necessary period within which people can operate with fixed
rules, according to some set of useful “stories.” However, these would
have to be transformed at sufficiently frequent periods if the organization
is to continue to survive. Therefore, as a counterweight to the “fixed” part
of the organization engaged in “lean” production, there would have to be
the exploratory part charged with the task of creating the next “fixed”
structure. This is one way in which knowledge generation and mainte-
nance could be managed in some sectors.    

THE LIMITS TO KNOWLEDGE
If we now take the different kinds of knowledge in which we may be
interested concerning a situation, then we can number them according
to:

1 What type of situation or object we are studying (classification—
“prediction” by similarity).

2 What it is “made of” and how it “works.”
3 Its “history” and why it is as it is.
4 How it may behave (prediction).
5 How and in what way its behavior might be changed (intervention

and prediction).  
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Then we can establish Table 1, which therefore in some ways provides us
with a very compressed view of the science of complexity. 

Assumptions 5 4 3 2
Type of model Equilibrium Nonlinear Self-organizing Evolutionary

dynamics 
(including chaos)

Type of system Yes Yes Yes Can change
Composition Yes Yes Yes but Can change
History Irrelevant Irrelevant Structure changes Important
Prediction Yes Yes Probabilistic Limited
Intervention and 
prediction Yes Yes Probabilistic Limited

Table 1 Systematic knowledge concerning the limits to systematic
knowledge

Here, we should comment on the fact that we have considered models
with at least assumptions 1 and 2. These concern situations where we
believe we know how to draw a boundary between a system and its envi-
ronment, and where we believe we know what the constituent variables
and components are. But these could be considered as being a single
assumption that chooses to suppose that we can understand a situation on
the basis of a particular set of influences—a typical disciplinary academic
approach with a ceteris paribus assumption. A boundary may be seen as
limiting some geographic extension, while the classification of variables
and mechanisms is really a region within the total possible space of
phenomena. 

A representation or model with no assumptions whatsoever is clearly
simply subjective reality. It is the essence of the postmodern, in that it
remains completely contextual. In this way, we could say that it does not
therefore fall within the science of complexity, since it does not concern
systematic knowledge. It is here that we should recognize that what is
important to us is not whether something is absolutely true or false, but
whether the apparent systematic knowledge being provided is useful.
This may well come down to a question of spatio-temporal scales. 

For example, if we compare an evolutionary situation to one that is so
fluid and nebulous that there are no discernible forms, and no stability for
even short times, we see that what makes an evolutionary model possible
is the existence of stable forms, for some time at least. If we are only inter-
ested in events over very short times compared to those usually involved
in structural change, it may be perfectly legitimate and useful to consider
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the structural forms fixed (i.e., we can make assumption 3). This doesn’t
mean that they are, it just means that we can proceed to do some calcu-
lations about what can happen over the short term, without having to
struggle with how forms may evolve and change. Of course, we need to
remain conscious that over a longer period forms and mechanisms will
change and that our actions may well be accelerating this process, but
nevertheless it can still mean that some self-organizing dynamic is useful. 

Equally, if we can assume not only that forms are fixed but that in addi-
tion fluctuations around the average are small (i.e., can make assumptions
3 and 4), we may find that prediction using a set of dynamic equations pro-
vides useful knowledge. If fluctuations are weak, it means that large fluc-
tuations capable of kicking the system into a new regime/attractor basin
are very rare and infrequent. This gives us some knowledge about the
probability that this will occur over a given period. So, our model can
allow us to make predictions about the behavior of a system as well as the
associated probabilities and risk of an unusual fluctuation occurring and
changing the regime. An example of this might be the idea of a 10-year
event and a 100-year event in weather forecasting, where we use the sta-
tistics of past history to suggest how frequent critical fluctuations are. Of
course, this assumes the overall stationarity of the system, supposing that
processes such as climate change are not happening. Clearly, when 100-
year events start to occur more often, we are tempted to suppose that the
system is not stationary, and that climate change is occurring. 

These are examples of the usefulness of different models and the
knowledge with which they provide us, all of which are imperfect and not
strictly true in an absolute sense, but some of which are useful. 

Systematic knowledge, therefore, should not be seen in absolute
terms, but as being possible for some time and in some situations, pro-
vided that we apply our “complexity reduction” assumptions honestly.
Instead of simply saying that “all is flux, all is mystery,” we may admit that
this is so only over the very long term (who wants to guess what the uni-
verse is for?). Nevertheless, for particular questions in which we are inter-
ested, we can obtain useful knowledge about their probable behavior by
making these simplifying assumptions, and this can be updated by contin-
ually applying the “learning” process of trying to “model” the situation. 

A FISHERIES EXAMPLE

The example of Canadian Atlantic Fisheries has been presented in several
articles (Allen & McGlade, 1986, 1987b, 1988; Allen, 1997). It includes
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models of different types, equilibrium, nonlinear dynamics, and self-
organizing. Here, we shall only describe a model that generates, explores,
and manages the “knowledge dynamics” of fishermen in different ways.
Our model (or story) is set in a spatial domain of 40 zones, with two fish-
ing ports on the coast of Nova Scotia. The model/story recounts the fish-
ing trips and catches of fishermen based on the knowledge they have of
the location of fish stocks and the revenue they might expect by fishing a
particular zone. This information comes essentially from the fishing activ-
ity of each boat and of the other boats, and therefore there is a tendency
for a “positive feedback trap” to develop in which the pattern of fishing
trips is structured by that of the catch—leading to self-reinforcement.
Areas where fishing boats are absent send no information about potential
catch and revenue. The parameters of the cod, haddock, and pollock are
all accurate, as are the costs and data about the boats. 

The spatial distribution of fishing boats has two essential terms. The
first takes into account the increase or decrease of fishing effort in zone I,
by fleet L, according to how profitable it is. If the catch rate is high for a
species of high value, revenue greatly exceeds the costs incurred in fish-
ing there, provided that the zone is not too distant from the port. Then
effort will increase. If the opposite is true, effort will decrease. The sec-
ond term takes into account the fact that due to information flows in the
system (radio communication, conversations in port bars, spying, etc.), to
a certain extent each fleet is aware of the catches being made by others.
Of course, boats within the same fleet may communicate freely the best
locations, and even between fleets there is always some “leakage” of
information.  This results in the spatial movement of boats, and is gov-
erned by the “knowledge” they have concerning the relative profits that
they expect at the different locations.  

This “knowledge” is represented in our model/story by the “relative
attractivity” that a zone has for a particular fishing boat, depending on
where it is, where its home port is, and what the skipper “knows.” For
these terms we use the idea of “boundedly rational” decision makers who
do not have “perfect” information or absolutely “rational” decision-
making capacity.  In other words, each individual skipper has a probabil-
ity of being attracted to zone I, depending on its perceived attractivity.
Since probability must vary between 0 and 1, we see that A must always
be defined as positive. A convenient form, quite usual in economics, is:

A i= eRUi
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where Ui is a “utility function.” Ui constitutes the “expected profit” of the
zone i, taking into account the revenue from the “expected catch” and the
costs of crew, boat, and fuel, etc. that must be expended to get it.

In this way, we see that boats are attracted to zones where high
catches and catch rates are occurring, but the information only passes if
there is communication between the boats in i and in j.  This will depend
on the “information exchange” matrix, which will express whether there
is cooperation, spying, or indifference between the different fleets.
However, responses in general will be tempered by the distances
involved and the cost of fuel.

In addition to these effects, however, our equation takes another very
important factor into account, factor R.  This expresses how “rationally,”
how “homogeneously,” or with what probability a particular skipper will
respond to the information he is receiving. For example, if I is small, then
whatever the “real” attraction of a zone i, as expressed in U, the
probability of going to any zone is roughly the same. In other words,
“information” is largely disregarded and movement is “random.” We have
called this type of skipper a stochast. Alternatively, if i is large, it means
that even the smallest difference in the attraction of several zones will
result in each skipper going, with probability 1, to the most attractive
zone. In other words, such deciders put complete faith in the information
they have, and do not “risk” moving outside of what they know. These
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Figure 7 An initial condition of our fishing story. Two trawler fleets and
one long liner fleet attempt to fish three species (cod, haddock, and pollock) 



“ultra rationalists” we have called Cartesians. The movement of the boats
around the system is generated by the difference at a given time between
the number of boats that would like to be in each zone, compared to the
number that actually are there. As the boats congregate in particular loca-
tions of high catch, so they fish out the fish population that originally
attracted them. They must then move on the next zone that attracts them,
and in this way there is a continuing dynamic evolution of fish popula-
tions and of the pattern of fishing effort. 

Let us describe briefly a key simulation that we have made of this
model. We consider the competition between fleets 1 and 2 fishing out of
port 1 in South West Nova Scotia. We start from the initial condition
shown above and simply let the model run, with catches and landings
changing the price of fish, and the knowledge of the different fleets
changing as the distribution of fish stocks changes. We let the model run
for 20 years, and see how the “rationality” I affects the outcome.

This is a remarkable result. The higher the value of R, the better the
fleet optimizes its use of information (knowledge management?) and in
the short term increases profits (e.g., R=3 or more). But, this does not
necessarily succeed in the long term. Cartesians have a tendency to “lock
in” to their first successful zone and stay fishing there for too long,
because it is the only information available. These Cartesians are not “risk
takers” who will go out to zones with no information, and hence they get
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Figure 8 Over 20 years the stochast (R=.5) beats the Cartesian (R= 2),
after initially doing less well



trapped in the existing pattern of fishing. The stochasts (R=.5), provided
that they are not totally random (R less than .1), succeed in both discov-
ering new zones with fish stocks, and also in exploiting those that they
have already located. 

This paradoxical situation results from the fact that in order to fish effec-
tively, two distinct phases must both be accomplished. First, the fish must
be “discovered.” This requires risk takers who will go out into the
“unknown” and explore—whatever present knowledge is. The second
phase, however, requires that when a concentration of fish has been dis-
covered, the fleet will move in massively to exploit this, the most profitable
location. These two facets are both necessary, but call on different qualities.

Our fishing model/story can be used to explore the evolution of strate-
gies over time. Summarizing the kinds of results observed, we find the
following kind of evolutionary sequence: 

� Fleets find a moderate behavior with rationality between .5 and 1.
� Cartesians try to use the information generated by stochasts, by

following them and by listening in to their communications.
� Stochasts attempt to conceal their knowledge, by communicating in

code, by sailing out at night, and by providing misleading information.
� Stochasts and Cartesians combine to form a cooperative venture with

stochasts as “scouts” and Cartesians as “exploiters.” Profits are shared.
� Different combinations of stochast/Cartesian behavior compete.
� In this cooperative situation, there is always a short-term advantage to

a participant who will cheat.
� Different strategies of specialization are adopted, e.g., deep-sea or

inshore fishing, or specialization by species.
� A fleet may adopt “variable” rationality, adapting its search effort

according to the circumstances.
� In all circumstances, the rapidity of response to profit and loss turns

out to be advantageous, and so the instability of the whole system
increases over time. 

The real point of these results is that they show us that there is no such
thing as an optimal strategy. As soon as any particular strategy becomes
dominant in the system, it will always be vulnerable to the invasion of
some other strategy. Complexity and instability are the inevitable conse-
quence of fishermen’s efforts to survive, and of their capacity to explore
different possible strategies. The important point is that a strategy does
not necessarily need to lead to better global performance of the system in
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order to invade. Nearly all the innovations that can and will invade the
fishing system lead to lower overall performance, and indeed to collapse.
Thus, higher technology, more powerful boats, faster reactions, etc. all
lead to a decrease in output of fish.

In reality, the strategies that invade the system are ones that pay off
for a particular actor in the short term. Yet, globally and over a long
period, the effect may be quite negative. For example, fast responses to
profit/loss or improved technology will invade the system, but they make
it more fragile and less stable than before. This illustrates the idea that
the evolution of complexity is not necessarily “progress,” and the system
is not necessarily moving toward some “greater good.”  

EVOLUTIONARY FISHING: LEARNING HOW TO LEARN
We can now take our model/story to a further stage: We can build a model
that will learn how to fish. To do this, we shall simply run fleets in competi-
tion with each other. They will differ in the parameters that govern their strat-
egy: rationality, rate of response to profit and loss, which fleets they try to
communicate with, etc. By running our model, some fleets will succeed and
some fail. If we take out the failures when they occur, and relaunch them with
new values of their strategy parameters, then we can see what evolves. 
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Figure 9 After 30 years fleet 7 has the best strategy (fast response to
profit/loss), although previously fleet 2 was best and then fleet 3



The importance of this model is that it demonstrates how, as we relax
the assumptions we normally make in order to obtain simple, mechanis-
tic representations of reality, we find that our model can really tell us
things we did not know. Our stories become richer and more variable, as
different outcomes occur and different lessons are learnt. In the spatial
model, we found that economically suboptimal behavior (low R) was nec-
essary in order to fish successfully, and that there was no single “optimal”
behavior or strategy, but there were possible sets of compatible strategies.
The lesson was that the pattern of fishing effort at any time cannot be
“explained” as being optimal in any way, but instead is just one particular
moment in an unending, imperfect learning process involving the ocean,
the natural ecosystem, and the fishermen. 

What is important is even further from the “observed” behavior of the
boats and the fish. It concerns the “meta” mechanisms by which the
parameter space of possible fishing strategies is explored. By running
“learning fleets” with different learning mechanisms in competition with
each other, our model can begin to show us which mechanisms succeed
in successfully generating and accumulating knowledge of how to suc-
ceed, and which do not. Our model has moved from the domain of the
physical—mesh size, boat power, trawling versus long lining, etc.—to the
nonphysical—How often should I monitor performance? What changes
could I explore? How can I change behavior? Which parameters are
effective?—in short, how can I learn? This results from relaxing both
assumptions 3 and 4. We move from a descriptive mechanical model to an
evolving model of learning “inside” fishermen, where behavior and
strategies change, and the payoffs and consequences emerge, over time.  

DISCUSSION

We have shown that knowledge generation results from making “simpli-
fying” assumptions. If these are all true, we have a truly appropriate and
useful model; but if the assumptions do not hold, our model may be com-
pletely misleading. Our reflection considered: 

� Equilibrium assumptions where change is assumed to be exogenous.
� Assumptions of fixed “average” mechanisms leading to nonlinear

dynamics (system dynamics), where interacting actors make changing
choices governed by the invariance of their preference functions.

� Self-organizing systems of interacting actors of fixed internal nature,
that interact through discrete events that are not assumed average,
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allowing the nonaverage to test the stability of any regime, and to
explore other basins of attraction and possible regimes of operation. 

� Evolutionary, learning models in which behaviors and preferences, goals
and strategies, can change, but the “learning mechanisms” are invariant.

These represent successively more general models, each step containing
the previous one as a special case, but also of increasing difficulty, and
indeed still probably far from “reality.” It is small wonder that most peo-
ple probably have a very poor understanding of the real consequences of
their actions or policies.

The discussion above also brings out a great deal concerning the ideas
that underlie the “sustainability” of organizations and institutions. This
does not result from finding any fixed, unbeatable set of operations that
correspond to the peak of some landscape of fitness. Any such landscape
is a reflection of the environment and of the strategies of the other play-
ers, and so it never stops changing. Any temporary “winner” will need
continually to monitor what is happening, reflect on possible conse-
quences, and possess the mechanisms necessary for self-transformation.
This will lead to the simultaneous “sustaining and transformation” of the
entities and of the system as new activities, challenges, and qualities
emerge. The power to do this lies not in extreme efficiency, nor can it be
had necessarily by allowing free markets to operate unhindered. It lies in
creativity. And, in turn, this is rooted in diversity, cultural richness, open-
ness, and the will and ability to experiment and to take risks. 

Instead of viewing the changes that occur in a complex system as nec-
essarily reflecting progress up some pre-existing (if complex) landscape,
we see that the landscape of possible advantage itself is produced by the
actors in interaction. The detailed history of the exploration process itself
affects the outcome. Paradoxically, our scientific pursuit of knowledge tells
us that uncertainty is therefore inevitable, and we must face this. Long-
term success is not just about improving performance with respect to the
external environment of resources and technology, but also is affected by
the “internal game” of a complex society. The “payoff” of any action for an
individual cannot be stated in absolute terms, because it depends on what
other individuals are doing. Strategies are interdependent. 

Ecological organization is what results from evolution, and it is com-
posed of self-consistent “sets” of activities or strategies, both posing and
solving the problems and opportunities of their mutual existence.
Innovation and change occur because of diversity, nonaverage individu-
als with their bizarre initiatives, and whenever this leads to an exploration
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into an area where positive feedback outweighs negative, growth will
occur. Value is assigned afterward. It is through this process of “post-hoc
explanation” that we rationalize events by pretending that there was some
pre-existing “niche” that was revealed by events, although in reality there
may have been a million possible niches and one particular one arose. 

The future, then, is not contained in the present, since the landscape
is fashioned by the explorations of climbers, and adaptability will always
be required. This does not necessarily mean that total individual liberty
is always best. Our models also show that adaptability is a group or pop-
ulation property. It is the shared experiences of others that can offer
much information. Indeed, it pays everyone to help facilitate exploration
by sharing the risks in some cooperative way, thus taking some of the
“sting” out of failure. There is no doubt that the “invention” of insurance
and of limited liability has been a major factor in the development of our
economic and social system. Performance is generated by mutual inter-
actions, and total individual freedom may not be consistent with good
social interactions, and hence will make some kinds of strategy impossi-
ble. Once again, we must differentiate between an “external game,”
where total freedom allows wide-ranging responses to outside changes,
and an “internal game,” where the division of labor, internal relations, and
shared experiences play a role in the survival of the system. 

Again, it is naïve to assume that there is any simple “answer.” The
world is just not made for simple, extreme explanations. Shades of grey,
subjective judgments, postrationalizations, multiple misunderstandings,
and biological/emotional motivations are what characterize the real
world. Neither total individual freedom nor its opposite are solutions,
since there is no “problem” to be solved. They are possible choices among
all the others, and each choice gives rise to a different spectrum of possi-
ble consequences, different successes and failures, and different
strengths and weaknesses. Much of this probably cannot really be known
beforehand. We can only do our best to put in place the mechanisms that
allow us always to question our “knowledge” and continue exploring. We
must try to imagine possible futures, and carry on modifying our views
about reality and about what it is that we want.

Mismatches between expectations and real outcome may either cause us
to modify our (mis)understanding of the world, or simply leave us perplexed.
Evolution in human systems is therefore a continual, imperfect learning
process, spurred by the difference between expectation and experience, but
rarely providing enough information for a complete understanding.    

Instead of the classical view of science eliminating uncertainty, the
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new scientific paradigm accepts uncertainty as inevitable. Indeed, if this
were not the case, then it would mean that things were preordained,
which would be much harder to live with. Evolution is not necessarily
progress and neither the future nor the past was preordained. Creativity
really exists, it is the motor of change, and the hidden dynamic that
underlies the rise and fall of civilizations, peoples, and regions, and evo-
lution both encourages and feeds on invention. Recognizing this, the first
step toward wisdom is the development and use of mathematical models
that capture this truth. 
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